NVIDIA’s GPU Technology Conference (GTC) 2025, held from March 17-21 in San Jose, established itself once again as the definitive showcase for cutting-edge advances in artificial intelligence computing and GPU technology. The five-day event attracted approximately 25,000 attendees, featured over 500 technical sessions, and hosted more than 300 exhibits from industry leaders. As NVIDIA continues to solidify its dominance in AI hardware infrastructure, the announcements at GTC 2025 provide a clear roadmap for the evolution of AI computing through the latter half of this decade.
I. Introduction
The NVIDIA GTC 2025 served as a focal point for developers, researchers, and business leaders interested in the latest advancements in AI and accelerated computing. Returning to San Jose for a comprehensive technology showcase, this annual conference has evolved into one of the most significant global technology events, particularly for developments in artificial intelligence, high-performance computing, and GPU architecture.
CEO Jensen Huang’s keynote address, delivered on March 18 at the SAP Center, focused predominantly on AI advancements, accelerated computing technologies, and the future of NVIDIA’s hardware and software ecosystem. The conference attracted participation from numerous prominent companies including Microsoft, Google, Amazon, and Ford, highlighting the broad industry interest in NVIDIA’s technologies and their applications in AI development.
II. Blackwell Ultra Architecture
One of the most significant announcements at GTC 2025 was the introduction of the Blackwell Ultra series, NVIDIA’s next-generation GPU architecture designed specifically for building and deploying advanced AI models. Set to be released in the second half of 2025, Blackwell Ultra represents a substantial advancement over previous generations such as the NVIDIA A100 and H800 architectures.
The Blackwell Ultra will feature significantly enhanced memory capacity, with specifications mentioning up to 288GB of high-bandwidth memory—a critical improvement for accommodating the increasingly memory-intensive requirements of modern AI models. This substantial memory upgrade addresses one of the primary bottlenecks in training and running large language models and other sophisticated AI systems.

The architecture will be available in various configurations, including:
- GB300 model: Paired with an NVIDIA Arm CPU for integrated computing solutions
- B300 model: A standalone GPU option for more flexible deployment
NVIDIA also revealed plans for a configuration housing 72 Blackwell chips, indicating the company’s focus on scaling AI computing resources to unprecedented levels. This massive parallelization capability positions the Blackwell Ultra as the foundation for the next generation of AI supercomputers.

For organizations evaluating performance differences between NVIDIA’s offerings, the technological leap from the H800 to Blackwell Ultra is more significant than previous comparisons between generations. NVIDIA positioned Blackwell Ultra as a premium solution for time-sensitive AI applications, suggesting that cloud providers could leverage these new chips to offer premium AI services. According to the company, these services could potentially generate up to 50 times the revenue compared to the Hopper generation released in 2023.
III. Vera Rubin Architecture
Looking beyond the Blackwell generation, Jensen Huang unveiled Vera Rubin, NVIDIA’s revolutionary next-generation architecture expected to ship in the second half of 2026. This architecture represents a significant departure from NVIDIA’s previous designs, comprising two primary components:
- Vera CPU: A custom-designed CPU based on a core architecture referred to as Olympus
- Rubin GPU: A newly designed graphics processing unit named after astronomer Vera Rubin

The Vera CPU marks NVIDIA’s first serious foray into custom CPU design. Previously, NVIDIA utilized standard CPU designs from Arm, but the shift to custom designs follows the successful approach taken by companies like Qualcomm and Apple. According to NVIDIA, the custom Vera CPU will deliver twice the speed of the CPU in the Grace Blackwell chips—a substantial performance improvement that reflects the advantages of purpose-built silicon.
When paired with the Rubin GPU, the system can achieve an impressive 50 petaflops during inference operations—a 150% increase from the 20 petaflops delivered by the current Blackwell chips. For context, this performance leap represents a significantly more substantial advancement than the improvements seen in the progression from A100 to H100 to H800 architectures.
The Rubin GPU will support up to 288 gigabytes of high-speed memory, matching the Blackwell Ultra specifications but with a substantially improved memory architecture and bandwidth. This consistent memory capacity across generations demonstrates NVIDIA’s recognition of memory as a critical resource for AI workloads while focusing architectural improvements on computational efficiency and throughput.
Technical specifications for the Vera Rubin architecture include:
- CPU Architecture: Custom Olympus design
- Performance: 2x faster than Grace Blackwell CPU
- Combined System Performance: 50 petaflops during inference
- Memory Capacity: 288GB high-speed memory
- Memory Architecture: Enhanced bandwidth and efficiency
- Release Timeline: Second half of 2026
IV. Future Roadmap
NVIDIA didn’t stop with the Vera Rubin announcement, providing a clear technology roadmap extending through 2027. Looking further ahead, NVIDIA announced plans for “Rubin Next,” scheduled for release in the second half of 2027. This architecture will integrate four dies into a single unit to effectively double Rubin’s speed without requiring proportional increases in power consumption or thermal output.
At GTC 2025, NVIDIA also revealed a fundamental shift in how it classifies its GPU architectures. Starting with Rubin, NVIDIA will consider combined dies as distinct GPUs, differing from the current Blackwell GPU approach where two separate chips work together as one. This reclassification reflects the increasing complexity and integration of GPU designs as NVIDIA pushes the boundaries of processing power for AI applications.
The announcement of these new architectures demonstrates NVIDIA’s commitment to maintaining its technological leadership in the AI hardware space. By revealing products with release dates extending into 2027, the company is providing a clear roadmap for customers and developers while emphasizing its long-term investment in advancing AI computing capabilities.
V. Business Strategy and Market Implications
NVIDIA’s business strategy, as outlined at GTC 2025, continues to leverage its strong position in the AI hardware market to drive substantial financial growth. Since the launch of OpenAI’s ChatGPT in late 2022, NVIDIA has seen its sales increase over six times, primarily due to the dominance of its powerful GPUs in training advanced AI models. This remarkable growth trajectory has positioned NVIDIA as the critical infrastructure provider for the AI revolution.
During his keynote, Jensen Huang made the bold prediction that NVIDIA’s data center infrastructure revenue would reach $1 trillion by 2028, signaling the company’s ambitious growth targets and confidence in continued AI investment. This projection underscores NVIDIA’s expectation that demand for AI computing resources will continue to accelerate in the coming years, with NVIDIA chips remaining at the center of this expansion.
A key component of NVIDIA’s market strategy is its strong relationships with major cloud service providers. At GTC 2025, the company revealed that the top four cloud providers have deployed three times as many Blackwell chips compared to Hopper chips, indicating the rapid adoption of NVIDIA’s latest technologies by these critical partners. This adoption rate is significant as it shows that major clients—such as Microsoft, Google, and Amazon—continue to invest heavily in data centers built around NVIDIA technology.
These strategic relationships are mutually beneficial: cloud providers gain access to the most advanced AI computing resources to offer to their customers, while NVIDIA secures a stable and growing market for its high-value chips. The introduction of premium options like the Blackwell Ultra further allows NVIDIA to capture additional value from these relationships, as cloud providers can offer tiered services based on performance requirements.
VI. Evolution of AI Computing
One of the most intriguing aspects of Jensen Huang’s GTC 2025 presentation was his focus on what he termed “agentic AI,” describing it as a fundamental advancement in artificial intelligence. This concept refers to AI systems that can reason about problems and determine appropriate solutions, representing a significant evolution from earlier AI approaches that primarily focused on pattern recognition and prediction.
Huang emphasized that these reasoning models require additional computational power to improve user responses, positioning NVIDIA’s new chips as particularly well-suited for this emerging AI paradigm. Both the Blackwell Ultra and Vera Rubin architectures have been engineered for efficient inference, enabling them to meet the increased computing demands of reasoning models during deployment.
This strategic focus on reasoning-capable AI systems aligns with broader industry trends toward more sophisticated AI that can handle complex tasks requiring judgment and problem-solving abilities. By designing chips specifically optimized for these workloads, NVIDIA is attempting to ensure its continued relevance as AI technology evolves beyond pattern recognition toward more human-like reasoning capabilities.
Beyond individual chips, NVIDIA showcased an expanding ecosystem of AI-enhanced computing products at GTC 2025. The company revealed new AI-centric PCs capable of running large AI models such as Llama and DeepSeek, demonstrating its commitment to bringing AI capabilities to a wider range of computing devices. This extension of AI capabilities to consumer and professional workstations represents an important expansion of NVIDIA’s market beyond data centers.
NVIDIA also announced enhancements to its networking components, designed to interconnect hundreds or thousands of GPUs for unified operation. These networking improvements are crucial for scaling AI systems to ever-larger configurations, allowing researchers and companies to build increasingly powerful AI clusters based on NVIDIA technology.
VII. Industry Applications and Impact
The advancements unveiled at GTC 2025 have significant implications for research and development across multiple fields. In particular, the increased computational power and memory capacity of the Blackwell Ultra and Vera Rubin architectures will enable researchers to build and train more sophisticated AI models than ever before. This capability opens new possibilities for tackling complex problems in areas such as climate modeling, drug discovery, materials science, and fundamental physics.
In the bioinformatics field, for instance, deep learning technologies are already revolutionizing approaches to biological data analysis. Research presented at GTC highlighted how generative pretrained transformers (GPTs), originally developed for natural language processing, are now being adapted for single-cell genomics through specialized models. These applications demonstrate how NVIDIA’s hardware advancements directly enable scientific progress across disciplines.
Another key theme emerging from GTC 2025 is the increasing specialization of computing architectures for specific workloads. NVIDIA’s development of custom CPU designs with Vera and specialized GPUs like Rubin reflects a broader industry trend toward purpose-built hardware that maximizes efficiency for particular applications rather than general-purpose computing.
This specialization is particularly evident in NVIDIA’s approach to AI chips, which are designed to work with lower precision numbers—sufficient for representing neuron thresholds and synapse weights in AI models but not necessarily for general computing tasks. As noted by one commenter at the conference, this precision will likely decrease further in coming years as AI chips evolve to more closely resemble biological neural networks while maintaining the advantages of digital approaches.
The trend toward specialized AI hardware suggests a future computing landscape where general-purpose CPUs are complemented by a variety of specialized accelerators optimized for specific workloads. NVIDIA’s leadership in developing these specialized architectures positions it well to shape this evolving computing paradigm.
VIII. Conclusion
GTC 2025 firmly established NVIDIA’s continued leadership in the evolving field of AI computing. The announcement of the Blackwell Ultra for late 2025 and the revolutionary Vera Rubin architecture for 2026 demonstrates the company’s commitment to pushing the boundaries of what’s possible with GPU technology. By revealing a clear product roadmap extending into 2027, NVIDIA has provided developers and enterprise customers with a vision of steadily increasing AI capabilities that they can incorporate into their own strategic planning.
The financial implications of these technological advances are substantial, with Jensen Huang’s prediction of $1 trillion in data center infrastructure revenue by 2028 highlighting the massive economic potential of the AI revolution. NVIDIA’s strong relationships with cloud providers and its comprehensive ecosystem approach position it to capture a significant portion of this growing market.
Perhaps most significantly, GTC 2025 revealed NVIDIA’s vision of AI evolution toward more sophisticated reasoning capabilities. The concept of “agentic AI” that can reason through problems represents a qualitative leap forward in artificial intelligence capabilities, and NVIDIA’s hardware advancements are explicitly designed to enable this next generation of AI applications.
As AI continues to transform industries and scientific research, the technologies unveiled at GTC 2025 will likely serve as the computational foundation for many of the most important advances in the coming years. NVIDIA’s role as the provider of this critical infrastructure ensures its continued significance in shaping the future of computing and artificial intelligence.